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On the axisymmetry of annular jet instabilities

By FALIN CHEN1, J IE -YING TSAUR1, FRANZ DURST2

AND SAMIR K. DAS1

1Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan 106, Republic of China
2Lehrstuhl fuer Stroemungsmechanik, Friedrich-Alexander-Universitaet Erlangen-Nuernberg,

D-91058 Erlangen, Germany

(Received 29 May 2002 and in revised form 18 March 2003)

We implement a linear stability analysis for the viscous annular jet surrounded by
inviscid motionless gas subject to three-dimensional disturbances, and an analytical
dispersion relation is presented. With this relation, we are able to obtain evidence that
the axisymmetric mode is the most unstable mode of the system. The evidence for
general cases is based on the numerical results obtained by solving the transcendental
dispersion relation for a wide range of physical parameters. The results for two special
cases, a very thin annular jet and an annular jet with disturbances of very short axial
wavelength, are obtained from two rigorous analytical approaches.

1. Introduction
The stability of annular jets is of both fundamental and practical interest. On the

practical side, the breakup of a jet into droplets due to instability has become a key
technology in, for example, internal combustion engines, gas turbines, liquid rocket
engines, ink-jet printers, spray coating, and so on. On the fundamental side, the
stability mechanisms are influenced by, for example, the surface tension of interfaces,
the flow inertia, the fluid viscosity, the thickness of annulus, and the densities of the
jet and surrounding fluid. And more interestingly, the analysis can be reduced to
some special cases, such as the round liquid jet, the hollow gas jet, the liquid sheet,
by taking limits of relevant physical parameters. A detailed review of the research
so far and a discussion on the stability characteristics can be found in, for example,
Mehring & Sirignano (2000), Chauhan et al. (2000) and Chen & Lin (2002).

Perhaps due to the complexity of the mathematical formulation, all of the previous
studies on annular jets have assumed that the instability is axisymmetric (Crapper,
Dombrowski & Pyott 1975; Meyer & Weihs 1987; Lee & Chen 1991; Shen & Li 1996;
Shkadov & Sisoev 1996; Chauhan et al. 2000; Mehring & Sirignano 2000; Chen &
Lin 2002). This assumption is valid under some circumstances, for example, a very
thin annular jet of low velocity (Kendall 1986; Lee & Wang 1986, 1989), but is not
valid for others like round water jets discharging into air in particular circumstances
(Lienhard 1968; Hoyt & Taylor 1977; Stockman & Bejan 1982; Kimura & Bejan
1983; Villermaux 1988; Shi et al. 1999). In this paper we discard this assumption and
perform a linear stability analysis for the three-dimensional disturbances on a viscous
annular jet surrounded by quiescent inviscid gas. We obtain an analytical dispersion
relation, with which we are able to obtain evidence that the axisymmetric mode is
most unstable in the system.

The paper is organized as follows. We first derive the analytical dispersion relation
in § 2. We then show in § 3 by a numerical approach that the axisymmetric mode is
the most unstable of the system in the wide range of physical parameters considered.
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Figure 1. A schematic description of (a) the para-sinous mode and (b) the para-varicous
mode. (c) The azimuthal waves of wavenumbers m = 0; m = 1; m = 2; m = 3; m = 4; m = 5.

We also show in § 4 for two special cases by rigorous analytical approaches that the
axisymmetric mode has the largest growth rate compared to other non-axisymmetric
modes. Finally, in § 5 concluding remarks are given.

2. The analytical dispersion relation
Consider an infinitely long annular liquid jet with inner radius a and outer radius

b (figure 1). The liquid jet is of density ρl and viscosity µ, moving with a uniform
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axial velocity U and surrounded by a motionless inviscid gas of density ρg in both
the inner core and outer surroundings. For such an annular jet, unstable waves
develop on both the inner and outer surfaces, which may be in phase or out of phase.
When the waves develop in phase, the shapes of the waves are antisymmetric with
respect to the mid-plane of liquid sheet, and this kind of instability mode is called
the para-sinuous mode (figure 1a). When the waves develop out of phase, the waves
are symmetric with respect to the mid-plane of the liquid sheet, and this mode is
called the para-varicous mode (figure 1b) (Shen & Li 1996). Since we consider three-
dimensional perturbations, the two surface waves may also be axisymmetric (m = 0)
or non-axisymmetric (m � 1) with respect to the central axis of the jet (figure 1c).

The governing equations of the viscous annular jet are the continuity and Navier–
Stokes equations. In the surrounding gases both outside and inside the annulus, the
flows are assumed to be inviscid and motionless. On the inner and outer surfaces of the
annular jet, we have the following boundary conditions: the tangential stress vanishes,
the normal stress balances the capillary force, and the kinematic condition relates the
interfacial deflection to the radial velocity (Meyer & Weihs 1987; Shen & Li 1996).
The equations of the annular jet admit a solution of uniform velocity u =(0, 0, U )
and zero pressure. Based on this uniform flow, we apply three-dimensional small
disturbances to the annular jet and neglect the higher-order terms to render the
equations linear. We then non-dimensionalize the linearized governing equations and
boundary conditions by the following scales: length by h, velocity by U , time by
h/U , and pressure by ρlU

2. After applying the normal-mode analysis and making a
straightforward evaluation of the velocity field in the resultant ordinary differential
equations, and relevant applications of boundary conditions, an analytical dispersion
relation is obtained as follows:

H2(A∆1 − H1∆3) + B(A∆4 + H1∆2) = 0, (1)

in which

∆1 = I ′
m(kb)Km(ka) − K ′

m(kb)Im(ka),

∆2 = I ′
m(ka)Km(kb) − K ′

m(ka)Im(kb),

∆3 = I ′
m(ka)K ′

m(kb) − K ′
m(ka)I ′

m(kb),

∆4 = Im(ka)Km(kb) − Km(ka)Im(kb),




(2a)

H1 =
Im(ka)

I ′
m(ka)

ξs2 − We

(
1 − m2

a2
− k2

)
− 2(s + ik)

Re

I ′′
m(ka)

I ′
m(ka)

,

H2 = −Km(kb)

K ′
m(kb)

ξs2 − We

(
1 − m2

b2
− k2

)
+

2(s + ik)

Re

K ′′
m(kb)

K ′
m(kb)

,




(2b)

A =
s + ik

Re

[
C1(a)

I ′′
m(ka)

I ′
m(ka)

− C2(a)

]
,

B =
s + ik

Re

[
C1(b)

K ′′
m(kb)

K ′
m(kb)

− C2(b)

]
,




(2c)

C1(r) =
2m2/r

k2r2 + m2
,

C2(r) =
m2

r2
+ k2 + n − (2m2/r2)(2k2 + n)

n(k2r2 + m2)
,




(2d)
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The details of the derivation of the above dispersion relation are shown in the
Appendix, in which the governing equations and boundary conditions (in linearized
form) are also given. In the above and subsequent equations of the present paper, we
use for briefness the notation [Xm(kr)]′ = X′

m(kr) and [Xm(kr)]′′ = X′′
m(kr), in which

X(r) denotes different Bessel functions and the prime and the double prime denote
d/dr and d2/dr2, respectively. Also, Im and Km are the modified Bessel functions of
the first and second kind of order m, k(real) and m(integer) are the wavenumbers in
respectively the axial and azimuthal directions, Re = ρlUh/µ is the Reynolds number,
We = σ/ρlhU 2 is the Weber number, h is the characteristic length taken to be a in
the present paper, σ is the surface tension, ξ = ρg/ρl is the density ratio between
the surrounding (or the core) gas and the liquid jet, n = m2/r2 + k2 + Re(s + ik), and
s = Sr + iSi is complex in which Sr denotes the growth rate of disturbance (Sr > 0 for
unstable, Sr < 0 for stable).

The dispersion relations (1) and (2) are for the three-dimensional disturbances
on a viscous annular jet surrounded by motionless inviscid gas, which can be put
into various simplified forms for some special cases through different asymptotic
approaches. For example, the simplified form for the three-dimensional inviscid
annular jet can be obtained if Re → ∞ is considered (Shen & Li 1996), that for
the plane liquid sheet can be obtained if a, b → ∞ is considered (Li & Tankin 1991),
that for the hollow gas jet surrounded by infinite liquid can be obtained if b → ∞ is
considered (Li 1994), that for the round liquid jet surrounded by infinite gas can be
obtained if a → 0 is considered (Yang 1992), and that for the axisymmetric annular
jet can be obtained if m =0 is considered (Shen & Li 1996). The details of these
simplification procedures are shown in Tsaur (2000).

3. Evidence supporting axisymmetric instability: numerical approach
The dispersion relation (1) and (2) is transcendental, and can be solved for the

growth rate Sr by a numerical approach. We did this by using mathematica, a
computer code that can implement symbolic computation. In the present system, there
are four relevant physical parameters: the Reynolds number Re, the Weber number
We, the density ratio ξ , and the radius ratio b/a. We calculate Sr in wide ranges of
these four parameters, but focus on the case: Re = 10, We= 0.0001, ξ = 0.0013 and
b/a = 1.25, which is relevant to the case of a water annular jet of medium thickness
surrounded by air. We consider three values of each parameter: Re= 10, 103, 106,
We= 10−4, 10−2, 1, ξ = 0.0013, 0.01, 0.1, b/a =1.25, 1.1, 1.01, and the results are
shown respectively in figures 2 to 5. According to previous results shown by, for
example Shen & Li (1996) and Chauhan et al. (2000), the para-sinuous mode has
been found to be more unstable than the para-varicous mode in all the situations
considered, which is also confirmed by the present results. We shall accordingly focus
on the para-sinuous mode in the following discussion.

The numerical results on the variations of the growth rates for varying physical
parameters are shown in figures 2 to 5. From a close inspection of the numerical
results, we summarize the following points regarding the axisymmetry of the instability
of the system:

(i) For all the cases considered (figures 2 to 5), the maximum of Sr of the
axisymmetric mode (m =0) is always larger than those of non-axisymmetric modes
(m > 0). Namely, the axisymmetric mode is the most unstable mode in the wide
parameter ranges considered.
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Figure 2. The variation of growth rate Sr with axial wavenumber k of the para-sinuous mode
for m= 0 to 9. The case considered is b/a = 1.25, We= 0.0001 and ξ = 0.0013 while Re varies:
(a) Re= 10, (b) Re= 103 and (c) Re =106.
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Figure 3. The variation of growth rate Sr with axial wavenumber k of the para-sinuous mode
for m = 0 to 9. The case considered is b/a = 1.25, Re = 10 and ξ = 0.0013 while We varies:
(a) We = 10−4, (b) We = 10−2 and (c) We = 1.

(ii) For each case shown in each part of figures 2 to 5, Sr of the axisymmetric mode
(m = 0) is always larger than those of non-axisymmetric modes (m > 0) in the regime
k � kc, where kc is the critical axial wavenumber at which the maximum Sr occurs.
We refer this regime of k as the ‘axisymmetry dominance regime’. To support this
conclusion, we shall show in the next section by an analytical approach that, when
the limit k → ∞ is considered, Sr of the axisymmetric mode is the largest.
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Figure 4. The variation of growth rate Sr with axial wavenumber k of the para-sinuous mode
for m= 0 to 9. The case considered is b/a = 1.25, Re= 10 and We= 0.0001 and while ξ varies:
(a) ξ = 0.0013, (b) ξ = 0.01 and (c) ξ = 0.1.
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Figure 5. The variation of growth rate Sr with axial wavenumber k of the para-sinuous mode
for m= 0 to 9. The case considered is Re =10, We = 0.0001 and ξ = 0.0013 while b/a varies:
(a) b/a = 1.25, (b) b/a = 1.1 and (c) b/a =1.01.

(iii) The range of the ‘axisymmetry dominance regime’ is increased when some
physical parameters approach a limiting value. For example, for an annular jet with
a smaller density difference between jet fluid and surrounding gas (ξ = 0.1, figure 4c)
or an annular jet of very thin film thickness (b/a = 1.01, figure 5c), the axisymmetry
dominance regime is extended to k � kl , where kl is much smaller than kc. For a
close-to-inviscid annular jet (Re = 106, figure 2c), the axisymmetry dominance regime
has extended to the whole range of k of non-zero growth rate; namely, 0 � k � kco,
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where kco is the so-called cut-off axial wavenumber beyond which the growth rate
of the instability mode is zero (Cousin & Dumouchel 1996). Again, to support this
finding regarding the increase in the axisymmetry dominance regime for the limiting
cases, we shall show in the next section by another analytical approach that, if the
limit b/a → 1 is considered, Sr of the axisymmetric mode is again the largest (in the
whole range of k).

4. Evidence supporting axisymmetric instability: analytical approach
A direct proof from the dispersion relation (1) and (2) that the axisymmetric mode

has the largest growth rate in the whole range of physical parameters considered
is an impossible task. However, the proof might be obtained for the following two
limiting cases: an annular jet of very thin thickness b/a → 1 and an annular jet with
disturbances of very short axial wavelength k → ∞. These proofs for special cases
from analytical approaches can complement the numerical evidence for the general
cases to support the present conclusion that the axisymmetric mode is the most
unstable mode of an annular jet.

To start the analytical proof, we rewrite the dispersion relation (1) and (2) in the
following form:

s = f (k, m; Re, We, ξ, b). (3)

We shall show that the relation ∂s/∂m|m=0 = 0 holds, implying that the growth rate
Sr has a local maximum (not minimum, according to the numerical results shown in
figures 2 to 5) when m = 0. After some mathematical rearrangement, this relation
can be written as

∂s

∂m

∣∣∣∣
m=0

=
T11 + T12

T2

, (4)

where T11, T12 and T2 for m = 0 are given by

T11 = − (s + ik)

Re
[2k2 + (s + ik)Re]

(
H2

∂∆1

∂m
+ H1

∂∆2

∂m

)
−

(
H1H2

∂∆3

∂m

)

+
(s + ik)2

Re2
[2k2 + (s + ik)Re]2

∂∆4

∂m
, (5)

T12 = (B∆2 − H2∆3)

[
ξs2 ∂

∂m

(
Im(ka)

I ′
m(ka)

)
− 2

Re
(s + ik)

∂

∂m

(
I ′′
m(ka)

I ′
m(ka)

)]

+ (A∆1 − H1∆3)

[
−ξs2 ∂

∂m

(
Km(kb)

K ′
m(kb)

)
+

2

Re
(s + ik)

∂

∂m

(
K ′′

m(kb)

K ′
m(kb)

)]
, (6)

T2 =
2(H2∆3 − B∆2)

kI1(ka)

(
ξsI0(ka) − I ′′

0 (ka)

Re

)
+

2(H1∆3 − A∆1)

kK1(kb)

(
ξsK0(kb) − K ′′

0 (kb)

Re

)

+

{
(s + ik)(1 + Re) + 2k2

Re

}{
(∆1H2 + ∆2H1) − 2(s + ik)

Re
[2k2 + (s + ik)Re]∆4

}
.

(7)

We then have to show that T11 + T12 = 0 and T2 �= 0 when m =0. A direct proof
of (4) for a general case is mathematically intractable. We accordingly consider the
following special cases, for which rigorous proofs are feasible.
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4.1. A very thin annual jet: b/a → 1

From (5) one can see that, since

(s + ik)

Re
[2k2 + (s + ik)Re] �= 0,

T11 will be zero if the following two conditions are satisfied at m = 0:

(s + ik)

Re
[2k2 + (s + ik)Re]

∂∆4

∂m
−

(
H2

∂∆1

∂m
+ H1

∂∆2

∂m

)
= 0, (8)

(
H1H2

∂∆3

∂m

)
= 0. (9)

Equations (8) and (9) can be satisfied if the following relations for m = 0 hold:

∂∆3

∂m
=

∂∆4

∂m
= 0, H2

∂∆1

∂m
+ H1

∂∆2

∂m
= 0. (10)

To show this, we consider that the thickness of the annular interface is very thin,
namely b/a → 1. Under this limiting condition, ∆i(i =1, 2, 3, 4) and Hj (j =1, 2) of
(2a, b) can be simplified into the following forms when relevant properties of modified
Bessel functions are used:

∆1|b/a→1 = [I ′
m(kb)Km(ka) − K ′

m(kb)Im(ka)]b/a→1 = 1/a,

∆2|b/a→1 = [I ′
m(ka)Km(kb) − K ′

m(ka)Im(kb)]b/a→1 = 1/a,

∆3|b/a→1 = [I ′
m(ka)K ′

m(kb) − K ′
m(ka)I ′

m(kb)]b/a→1 = 0,

∆4|b/a→1 = [Im(ka)Km(kb) − Km(ka)Im(kb)]b/a→1 = 0,




(11a)

H1|b/a→1 =
Im(ka)

I ′
m(ka)

ξs2 − We

(
1 − m2

a2
− k2

)
− 2(s + ik)

Re

I ′′
m(ka)

I ′
m(ka)

,

H2|b/a→1 = −Km(ka)

K ′
m(ka)

ξs2 − We

(
1 − m2

a2
− k2

)
+

2(s + ik)

Re

K ′′
m(ka)

K ′
m(ka)




(11b)

Since ∆i are constant, their derivatives with respect to m will vanish. Accordingly,
the two conditions of (10) are satisfied, and so are (8) and (9). Therefore, T11 ≡ 0 is
proved. To show that T12 ≡ 0, we simplify (6) by using relevant relations of (11) and
the fact that A ≡ B when m = 0. We then have

T12 = A∆1

[
ξs2 ∂

∂m

(
Im(ka)

I ′
m(ka)

− Km(ka)

K ′
m(ka)

)
− 2

Re
(s + ik)

∂

∂m

(
I ′′
m(ka)

I ′
m(ka)

− K ′′
m(ka)

K ′
m(ka)

)]
.

(12)

It is known that when ka � m the Bessel functions of (12) approach exponential
functions, which are independent of m. Accordingly, both the arguments of the two
derivatives on the right-hand side of (12) are independent of m and, consequently,
the two derivatives of (12) vanish. So that T12 ≡ 0 is confirmed.

Now, it remains to show that T2 �= 0. We simplify (7) further by using relevant
relations of (11) when m = 0 and b/a → 1 and obtain

T2 =
2A

ka

[
− ξs/ka

I1(ka)K1(ka)
+

1

Re

{
I ′′
0 (ka)

I1(ka)
+

K ′′
0 (ka)

K1(ka)

}]

+

{
(s + ik)(1 + Re) + 2k2

Re

}
1

a
(H1 + H2)b/a→1. (13)
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Since (H1 + H2)b/a→1 �= 0 and the terms involving I0(ka), K0(ka) and their first-
and second-order derivatives are all non-zero for finite ka, T2 �= 0 must hold. In
conclusion, we have shown that, for a very thin annular jet, i.e. b/a → 1, the relation
∂s/∂m|m=0 = 0 holds. Namely, the axisymmetric instability mode has the largest
growth rate, and is therefore the most unstable mode and will dominate the instability
of the system.

This proof is supported by the numerical results for the case b/a = 1.01
(figure 2c) in which the growth rate of the axisymmetric mode in virtually the
whole range of k considered (25 ≈ kl � k � kco ≈ 700) is invariably larger than those
of non-axisymmetric modes. This proof is also supported by the results of Kendall
(1986) and Lee & Wang (1986, 1989), who showed that for a thin annular jet with a
slow jet flow, the shape of the annular jet was always observed to be axisymmetric.

4.2. An annular jet with disturbances of very short axial wavelength: k → ∞
In this subsection, we will show that for an annular jet of finite thickness (a �= b)
with disturbances of very short axial wavelength (k → ∞) the axisymmetric mode
has the largest growth rate. We consider the limit k → ∞ and use the limiting
forms of modified Bessel functions Im and Km as k → ∞; then ∆i(i = 1, 2, 3, 4) and
Hj (j = 1, 2) can be reduced to the following when ka � m:

∆1 → 1

2
√

ab

(
ekb

eka
+

eka

ekb

)
, ∆2 → 1

2
√

ab

(
ekb

eka
+

eka

ekb

)
,

∆3 → k

2
√

ab

(
ekb

eka
− eka

ekb

)
, ∆4 → 1

2k
√

ab

(
eka

ekb
− ekb

eka

)
,




(14a)

H1 → ξ

k
s2 − We

(
1

a2
− k2

)
− 2k

Re
(s + ik),

H2 → ξ

k
s2 − We

(
1

b2
− k2

)
− 2k

Re
(s + ik),




(14b)

A|k→∞ = B|k→∞ = − (s + ik)

Re
[2k2 + Re(s + ik)]. (14c)

Note that in (14a) the ∆i are, again, not function of m, and therefore their
derivatives with respect to m will vanish. From a close inspection of the order
of magnitude of the terms of (14) we found from order analyses that ∆1 ≡ O(ek(b−a)),
∆2 ≡ O(ek(b−a)), ∆3 ≡ O(kek(b−a)), ∆4 ≡ O(ek(b−a)/k), H1 ≡ O(k2) and H2 ≡ O(k2) when
m = 0. Accordingly, the highest order of k of T11 is O(k6), that of T12 is O(k3ek(b−a)),
and that of T2 is O(k4ek(b−a)). By dividing each term by k4ek(b−a) and taking the limit
as k → ∞, we conclude that T11 → 0 after applying L’Hopital’s rule twice. Similarly,
T12 → 0 and T2 → O(1) �= 0 can be also obtained by a similar order analysis. In
conclusion, when the axial wavelength of the disturbance is very small (k → ∞), the
axisymmetric mode has the largest growth rate. This analytical proof is supported by
all the numerical results shown in figures 2 to 5 that as k > kc the value of Sr for the
axisymmetric mode is always larger than those of non-axisymmetric modes.

5. Concluding remarks
We have implemented a linear stability analysis for three-dimensional small

disturbances on an annular jet surrounded by motionless inviscid gas. Through a
formal mathematical operation, we obtain a dispersion relation in analytical form, (1)
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and (2). This general relation is useful because it can be reduced to special relations
for some limiting cases by taking an asymptotic approach for relevant physical
parameters; examples are the three-dimensional inviscid annular jet if Re → ∞, the
plane liquid sheet if a, b → ∞, the hollow gas jet surrounded by infinite liquid if
b → ∞, the round liquid jet surrounded by infinite gas if a → 0, and the axisymmetric
annular jet if m =0. Moreover, using this relation, the stability characteristics of
an annular jet under some special situations, such as in the extremely long-axial-
wavelength regime (k → 0), in the extremely short-axial-wavelength regime (k → ∞),
an extremely thin annular jet (b/a → 1), can also be examined. In summary, the
dispersion relation can be very useful for a stability analysis of cases related to the
annular jet, through which we can obtain complete information regarding the stability
of the jet system considered.

More significantly, with the aid of this analytical dispersion relation, we are able
to show analytically that, for two special jets, a very thin annular jet (b/a → 1)
and an annular jet with disturbances of very small axial wavelength (k → ∞), the
axisymmetric instability mode has the largest growth rate. For annular jets of arbitrary
form, our numerical results calculated from (1) and (2) for a wide range of physical
parameters also indicate that the axisymmetric mode is the most unstable one. The
numerical results also support the analytical proofs for the limiting cases considered.
This conclusion improves on all previous investigations of the stability of annular
jets, in which only the axisymmetric mode has been considered.

To date, to the best of our knowledge, only investigations of the stability of the
round jet have considered the possible onset of non-axisymmetric modes (for example
Yang 1992; Lin & Webb 1994; Avital 1995; Parthasarathy & Chiang 1998), whereas
linear stability results indicated invariably that the axisymmetric mode always has
the largest growth rate. Experimental works (for example, Lienhard 1968; Hoyt &
Taylor 1977; Stockman & Bejan 1982; Kimura & Bejan 1983; Villermaux 1988; Shi
et al. 1999) have reported that the non-axisymmetric modes might occur, but only in
the nonlinear regime. In the present paper we show that, for the physical parameter
regimes considered and for the limiting cases considered, the axisymmetric mode is
the most unstable one. Although we are not able to show that this conclusion will
invariably hold under any circumstances, we nevertheless, based on the present and
previous results, would expect this to be the case.

We note that Chen & Lin (2002) studied an annular jet in a pipe, including
consideration of the viscosity of the surrounding gas; again, only the axisymmetric
mode was considered. In such a system, there are 10 physical parameters influencing
the stability characteristics, and the eigenvalue problem must be solved by a numerical
approach, which, however, required a very close initial guess to obtain a convergent
solution. In our experience, due to the large parameter space as well as the strict
limitation on the initial guess, it would be very difficult to implement a three-
dimensional stability analysis of such a system through the numerical approach, let
alone an analytical approach as the present paper shows. Nevertheless, whether the
effects due to the motion of a surrounding viscous gas would influence the conclusion
of present paper merits future research.
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University of Erlangen to initiate this work. The work was finished in Taiwan under
the financial support from National Science Council grant NSC 88-2212-E-002-018.
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Appendix. The derivation of dispersion relation (1) and (2)
Consider the infinitely long annular liquid jet with inner radius a and outer radius b

shown in figure 1. A three-dimensional linear stability analysis on the jet is performed.
The linearized small-perturbation equations and boundary conditions are obtained
through routine linear stability analysis procedures. After applying a normal-mode
expansion, we obtain the following ordinary differential equations:

ûr

r
+ û′

r + i
(m

r
ûθ + kûz

)
= 0, (A 1)

û′′
r +

1

r
û′

r −
[
1 + m2

r2
+ k2 + Re(s + ik)

]
ûr − p̂

′Re − 2im

r2
ûθ = 0, (A 2)

û′′
θ +

1

r
û′

θ −
[
1 + m2

r2
+ k2 + Re(s + ik)

]
ûθ − im

r
p̂Re +

2im

r2
ûr = 0, (A 3)

û′′
z +

1

r
û′

z −
[
m2

r2
+ k2 + Re(s + ik)

]
ûz − ikp̂Re = 0. (A 4)

Similarly, the kinematic conditions at r = a+ and r = b− are obtained as

ûr |r=a+ = sεa =
s

s + ik
ûr |r=a+, (A 5)

ûr |r=b− = sεb =
s

s + ik
ûr |r=b−, (A 6)

the dynamic conditions on r = a+ and r = b− as

ikûr + û′
z = 0, (A 7)

û′
θ − ûθ

r
+

im

r
ûr = 0, (A 8)

and the pressure–continuity conditions as

−ξp̂a = −p̂ + We εa

(
1 − m2

a2
− k2

)
+

2

Re
û′

r at r = a+, (A 9)

−ξp̂b = −p̂ − We εb

(
1 − m2

b2
− k2

)
+

2

Re
û′

r at r = b−. (A 10)

We note that

∇2p = 0, (A 11)

which is obtained by taking the divergence of the Navier–Stokes equation and
applying continuity to eliminate the velocity terms. By applying a normal-mode
expansion to (A 11), we have

p̂′′ +
1

r
p̂′ −

(
m2

r2
+ k2

)
p̂ = 0. (A 12)

It is seen that (A 12) is a Bessel equation; its solution can be written as the combination
of modified Bessel functions of order m. Namely, for the liquid jet the solution is

p̂(r) = A1Im(kr) + B1Km(kr) in a � r � b. (A 13)

For the surrounding gas, the pressure is bounded, so that

p̂a(r) = A2Im(kr) in r � a, (A 14)

p̂b(r) = B2Km(kr) in r � b. (A 15)
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In (A 13), (A 14) and (A 15) there are four coefficients A1, B1, A2, and B2 to be
determined, so that four conditions on pressure are required. Equations (A 9) and
(A 10) will be utilized first, and the terms containing û′

r will be considered initially. We
exploit the momentum equations of the surrounding gas and the kinematic conditions
(A 5) and (A 6) and obtain

p̂
′
a(r) = − s2

s + ik
ûr at r = a+, (A 16)

p̂
′
b(r) = − s2

s + ik
ûr at r = b−. (A 17)

We then differentiate (A 14) and (A 15) and substitute the results into (A 16) and
(A 17) and obtain

ûr = −s + ik

s2
I ′
m(ka)A2 at r = a+, (A 18)

ûr = −s + ik

s2
K ′

m(kb)B2 at r = b−. (A 19)

We denote dIm(kr)/dr |r=a by I ′
m(ka) and correspondingly for Km(kr). Consequently,

(A 9), (A 10) and (A 18) and (A 19) consist of two of the four conditions required
to solve the four coefficients in (A 13) to (A 15). To obtain another two conditions,
we seek another relation between ûr and p̂ by eliminating ûθ in (A 2) as relevant
boundary conditions are applied, resulting in[

m2

r2
+ k2 + n − (2m2/r2)(2k2 + n)

n(k2r2 + m2)

]
ûr − 2m2/r

k2r2 + m2
û′

r + p̂
′Re = 0, (A 20)

in which n = m2/r2 + k2 + Re(s + ik). Equation (A 20) holds for both r = a and
r = b, and these are the two equations we are seeking. So the four coefficients A1, B1,
A2 and B2 can be determined by the four homogeneous equations (A 9), (A 10) and
(A 20) for r = a and b. The dispersion relation (1) and (2) can therefore be obtained
by the 4 × 4 determinant since these four coefficients cannot be zero simultaneously.
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